学院快讯:

当前位置: 网站首页 >  师资队伍 >  专任教师 >  建筑工程系 >  教授 > 

于清亮

  


个人信息


于清亮,武汉大学土木建筑工程学院教授、博士生导师。主要研究领域为 1)水泥基材料基础理论研究;(2)功能性水泥基结构材料研究(例如超高性能,空气净化,自洁净,轻质高强保温,抗火等);(3)可持续混凝土结构材料研究(例如无机聚合物胶凝材料,生态再生混凝土材料等);(4)混凝土结构材料耐久性能研究。近10年来主持或重点参与荷兰自然科学基金欧盟基金项目及企业联合科研等科研项目10余项,涉及科研经费400余万欧元。目前主持海外高层次人才引进计划青年项目。 截止到目前,共指导博士后2名,共指导博士14名(8名在读),指导超过20名硕士研究生研究课题。现担任SCI期刊Construction and Building Materials编委,并长期受邀担任30余份SCI期刊审稿人。

 

Email:qingliang.yu@whu.edu.cn

通训地址:武汉市武昌区东湖南路8号,武汉大学土木建筑工程学院结构楼501室

 

于清亮教授长期招收混凝土结构材料方向的硕士研究生、博士研究生和博士后研究员,待遇优厚,诚邀海内外青年学者加盟,有意者请联系。我们与荷兰埃因霍温理工大学等世界知名大学合作密切。小组成员均有机会赴海外学习交流,优秀本科和硕士可推荐免试成为世界一流高校博士生;优秀博士研究生可获机会与海外著名高校进行联合培养。


教育及任职经历

 

于清亮教授本科(1999-2003)及硕士(2003-2006)分别就读于武汉理工大学土木工程及结构工程专业,硕士毕业论文课题为高性能预应力混凝土结构材料设计与计算分析;博士(2008-2012)就读于荷兰埃因霍温理工大学大学,博士论文课题为功能性建筑材料用以提高室内空气质量的设计与仿真分析。于清亮先后在武汉理工大学(2006-2007)、埃因霍温理工大学(2012-2019)从事科研与教学工作,其中2014-2019在埃因霍温理工大学任助理教授、副教授。



论文发表

 

截止到2019年11月,共发表3部专著(章节),70余篇SCI论文,15篇非SCI论文,70余篇国际会议论文, Scopus H-index 19 (引用1130余次).

 

部分学术论文:

[1]Yu, Q.L. (2019). “Application of nanomaterials in alkali activated materials” in Book “Nanotechnology in eco-efficient construction”. ISBN: 978-0-08-102641-0, Woodhead Publishing, Elsevier.

[2]Gao, X., Yuan, B., Yu*, Q.L., Brouwers, H.J.H. (2017) (* correspondence author). “Chemistry, design and application of hybrid alkali activated binders” in Book “Cementitious Materials. Composition, Properties, Application”. ISBN: 978-3-11-047373-5, DeGruyter.

[3]Lazaro#, A., Yu#, Q.L., Brouwers, H.J.H. (2016) (# both are equal first authors). “Nanotechnologies for Sustainable Construction” in Book “Sustainability of Construction Materials”. ISBN: 9780081009956, Woodhead Publishing, Elsevier Ltd.

[4]Y.Y.Y. Cao, Q.H. Tan, Z.G. Jiang, H.J.H. Brouwers, Q.L. Yu* (2019). A nonlinear rate-dependent model for predicting the depth of penetration in Ultra-High Performance Fiber Reinforced Concrete (UHPFRC), Cement and Concrete Composites, accepted, in press.

[5]Mehdi Jonoobi, Jos Brouwers, Alireza Ashori, Kristiina Oksmand, Qingliang Yu* (2019). Novel and promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption, Carbohydrate Polymers: 115571.

[6]P.P. Li, H.J.H. Brouwers, Qingliang Yu (2020). Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance, International Journal of Impact Engineering, 136: 103434.

[7]Yu*, Q.L., Glas, D., Brouwers, H.J.H. (2019). Effects of hydrophobic natural expanded silicate aggregates on the properties of structural lightweight aggregate concrete, Journal of Materials in Civil Engineering, accepted, in press.

[8]Bo Li, Neng Li, H.J.H. Brouwers, Qingliang Yu, Wei Chen (2020), Understanding Hydrogen Bonding in Calcium Silicate Hydrate Combining Solid-state NMR and First Principle Calculations, Construction and Building Materials, 233: 117347.

[9]Karimi, H., Yu*, Q.L., Brouwers, H.J.H. (2019). Shredded waste diapers (SWDs) as a viscosity modifying admixture for cement grouts and concrete, Resources, Conservation & Recycling, accepted, in press.  

[10]Fan Wu, Qingliang Yu*, Changwu Liu, H.J.H. Brouwers, Linfeng Wang (2019). Effect of surface treatment of apricot shell on mechanical properties and durability of lightweight bio-concrete, Construction and Building Materials: 229: 116859.

[11]Li, P.P., Cao, Y.Y.Y., Brouwers, H.J.H., Chen, W. and Yu*, Q.L. (2019). Evaluating the sustainability of ultra-high performance paste applying quaternary binders, Journal of Cleaner Production 240: 118124.

[12]P. P. Li, Q. L. Yu*, H.J.H. Brouwers, W. Chen, (2019). Conceptual design and performance evaluation of two-stage ultra-low binder ultra-high performance concrete, Cement and Concrete Research 125: 105858.

[13]Sima Sepahvand, Mehdi Jonoobi, Alireza Ashori, Florent Gauvin, Jos Brouwers, Qingliang Yu* (2019). Surface modification of cellulose nanofiber aerogels using phthalimide, Polymer composites, 1-8: https:// doi.org/10.1002/pc.25362.

[14]Kaja, A.M., Brouwers, H.J.H., Yu* Q.L. (2019). NOx degradation by photocatalytic mortars: The underlying role of the CH and C-S-H carbonation mechanisms, Cement and Concrete Research 125: 105805.

[15]Zixiao Wang, Pan Feng, Heng Chen, Qingliang Yu (2020). Influence of cationic impurities on the photocatalytic performance and stability of Nano TiO2 hydrosol, Journal of Environmental Sciences 8: 59-71.

[16]Bo Li, Shizhe Zhang, Qiu Li, Neng Li, Bo Yuan, Wei Chen, Brouwers H.J.H, Qingliang Yu (2019). Uptake of Heavy Metal Ions in Layered Double Hydroxides and Applications in Cementitious Materials: Experimental Evidence and First-principle Study, Construction and Building Materials, 222: 96-107.

[17]Cao, Y.Y.Y., Yu*, Q.L., Brouwers, H.J.H., W. Chen (2019). Predicting the rate effects on hooked-end fiber pullout performance from Ultra-High Performance Concrete, Cement and Concrete Research, 120: 164-175.

[18]Gao, X., Yu*, Q.L. (2019). Effects of an eco-silica source based activator on functional alkali activated lightweight composites, Construction and Building Materials, 215: 686-695.

[19]Fatemeh Rafieian, Mohammad Mousavi, Qingliang Yu, Mehdi Jonoobi (2019). Amine functionalization of microcrystalline cellulose assisted by (3-chloropropyl)triethoxysilane, International Journal of Biological Macromolecules, 130: 280-287.

[20]Y.Y.Y. Cao, P.P. Li, H.J.H. Brouwers, M.J.C. Sluijsmans, Q.L. Yu* (2019). Enhancing flexural performance of ultra-high performance concrete by an optimized layered-structure concept, Composite Structures Part B: Engineering, 171: 154-165.

[21]Fatemeh Rafieian, Mehdi Jonoobi, Qingliang Yu (2019). A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye absorption from water, Cellulose, 26(5): 3359-3373.

[22]Hendrix, Y., Lazaro, A., Yu*, Q.L., Brouwers, H.J.H. (2019). Influence of synthesis conditions on the properties of photocatalytic titania-silica composites, Journal of Photochemistry and Photobiology A: Chemistry, 371: 25-32.

[23]Li, P. P., Yu*, Q.L. (2019). Responses and post-impact properties of ultra-high performance fibre reinforced concrete under pendulum impact, Composite Structures, 218: 806-815.

[24]Doudart de la Gree, G.C.H., V. Caprai, J.E.G. van Dam, H. van As, Brouwers, H.J.H., Yu*, Q.L. (2019). Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder composites. Journal of Cleaner Production, 206: 808-818.

[25]Z.Y. Qu, Q.L. Yu* (2018). Durability of lightweight aggregate concrete applying super-hydrophobic ground granulated blast furnace slag, Construction and Building Materials, 191: 176-186.

[26]Yu*, Q.L., Hendrix, Y., Lorencik, S., Brouwers, H.J.H. (2018). Field study of NOx degradation by a transparent mineral-based photocatalytic coating, Building and Environment, 142: 70-82.

[27]Kaja, A., Lazaro, A., Yu*, Q.L. (2018). Effects of Portland cement on activation mechanism of class F fly ash geopolymer under ambient conditions, Construction and Building Materials, 189: 1113-1123.

[28]Cao, Y.Y.Y., and Yu*, Q.L. (2018). Pull-out performance of inclined hooked end fiber embedded in ultra-high performance concrete (UHPC), Composite Structures, 201: 151-160. [29]Fatemeh Rafieian, Maleksadat Hosseini, Mehdi Jonoobi, Qingliang Yu (2018). Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation, Cellulose, 28: 4695-4710.

[30]Qu, Z.Y., Yu*, Q.L., Brouwers, H.J.H. (2018). Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress. Cement and Concrete Research, 105: 81-90.

[31]Li, P.P., Yu*, Q.L., Brouwers, H.J.H. (2018). Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Construction and Building Materials, 170: 649-659.

[32]Gauvin, F., Caprai, V., Yu, Q.L., Brouwers, H.J.H. (2018). Effect of the morphology and pore structure of porous building materials on photocatalytic oxidation of air pollutants. Applied Catalysis B: Environmental. 227: 123-131.

[33]Giosuè, C., Yu*, Q.L., Ruello, M.L., Tittarelli, F., Brouwers, H.J.H. (2018). Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar. Construction and Building Materials, 171: 232-242

[34]Keulen, A., Yu*, Q.L., Zhang, S. and Grünewald, S. (2018). Effect of admixture on the relationship between pore structure refinement and enhanced performance of alkali-activated fly ash-slag concrete. Construction and Building Materials, 162:27-36.

[35]Doudart de la Gree, G.C.H., Yu*, Q.L., Brouwers, H.J.H. (2017). Assessing the effect of CaSO4 content on the hydration kinetics of cements containing sugars. Construction and Building Materials, 143: 48-60.

[36]Doudart de la Gree, G.C.H., Yu*, Q.L., Brouwers, H.J.H. (2018). Upgrading and evaluation of waste paper sludge ash in eco-lightweight cement composites. Journal of Materials in Civil Engineering, 30(3): 04018021-1-04018021-11.

[37]Gao, X., Yu, Q.L., Yu*, R., Brouwers, H.J.H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures, 50:165.

[38]Gao, X., Yu*, Q.L., Lazaro, A., Brouwers, H.J.H. (2017). Evaluating an eco-olivine nano-silica as alternative silica source in alkali activated composites. Journal of Materials in Civil Engineering, 30(3): 04018016-1-04018016-8.

[39]Gao, X., Yu*, Q.L., Brouwers, H.J.H. (2017). Applying 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag, fly ash and their composites. Ceramics International, 43 (15), 12408-12419.

[40]Gao, X., Yu*, Q.L., Lazaro, A., Brouwers, H.J.H. (2017). Investigation on a green olivine nano-silica based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cement and Concrete Research, 100: 129-139.

[41]B. Botterman, G.C.H. Doudart de la Grée, M.C.J. Hornikx, Q.L. Yu*, and H.J.H. Brouwers (2018). Characterizing, modelling and optimizing the sound absorption of wood-wool cement boards. Applied Acoustics, 129: 144-154.

[42]Yuan, B., Yu*, Q.L., Brouwers, H.J.H. (2017). Time-dependent characterization of Na2CO3 activated slag. Cement and Concrete Composites, 84: 188-197.

[43]Yuan, B., Yu*, Q.L., Dainese, E., Brouwers, H.J.H. (2017). Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder. Construction and Building Materials, 153:459-468.

[44]Yuan, B., Yu*, Q.L., Brouwers, H.J.H. (2017). Phase modification induced drying shrinkage improvement on Na2CO3 activated slag by incorporating Na2SO4. Materials and Structures, 50:220.

[45]Yuan, B., Straub, C., Segers, S., Yu*, Q.L. & Brouwers, H.J.H. (2017). Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International, 43, 193-201.

[46]Gao, X., Yuan, B., Yu*, Q.L., Brouwers, H.J.H. (2017). Applying waste incineration bottom ash and waste granite powder in alkali activated slag: micro-scale characterization, leaching behavior and carbon footprint. Journal of Cleaner Production, 164, 410-419.

[47]Li, P.P., Yu*, Q.L., Brouwers, H.J.H. (2017). Effect of PCE-type superplasticizer on early-age behaviour of Ultra-High Performance Concrete (UHPC). Construction and Building Materials 153, 740-750.

[48]Chen, Yuxuan, Yu*, Q.L., Brouwers, H.J.H. (2017). Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus. Construction and Building Materials 157:839-851.

[49]Yuan, B., Yu*, Q.L. & Brouwers, H.J.H. (2017). Assessing the Chemical Involvement of Limestone Powder in Sodium Carbonate Activated Slag. Materials and Structures, 50, 136.

[50]Yuan, B., Yu*, Q.L. & Brouwers, H.J.H. (2017). Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na2CO3 activated slag. Construction and Building Materials, 131, 334-346.

[51]Lorencik, S., Yu*, Q.L., Brouwers, H.J.H. (2016). Photocatalytic coating for indoor air purification: Synergetic effect of photocatalyst dosage and silica modification. Chemical Engineering Journal 306 (2016) 942–952.

[52]Gao, X., Yu*, Q.L., Brouwers, H.J.H. (2016). Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model, Construction and Building Materials 119, 175-184.

[53]Huiskes, D.M.A., Keulen, A., Yu*, Q.L. & Brouwers, H.J.H. (2016). Design and performance evaluation of ultra-lightweight geopolymer concrete. Materials & Design, 89, 516-526.

[54]Yu, R., Onna, van, D.V., Spiesz, P.R., Yu, Q.L. & Brouwers, H.J.H. (2016). Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. Journal of Cleaner Production, 112-p1, 690-701.

[55]Gao, X., Yu*, Q.L. & Brouwers, H.J.H. (2015). Characterization of alkali activated slag–fly ash blends containing nano-silica. Construction and Building Materials, 98, 397-406.

[56]Gao, X., Yu*, Q.L. & Brouwers, H.J.H. (2015). Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials, 80, 105-115.

[57]Gao, X., Yu, Q.L. & Brouwers, H.J.H. (2015). Properties of alkali activated slag-fly ash blends with limestone addition. Cement & Concrete Composites, 59, 119-128.

[58]Lorencik, S., Yu*, Q.L. & Brouwers, H.J.H. (2015). Design and performance evaluation of the functional coating for air purification under indoor conditions. Applied Catalysis. B, Environmental, 168-169, 77-86.

[59]Yu*, Q.L., Spiesz, P.R. & Brouwers, H.J.H. (2015). Ultra-lightweight concrete: conceptual design and performance evaluation. Cement & Concrete Composites, 61, 18-28.

[60]Yuan, B., Yu, Q.L. & Brouwers, H.J.H. (2015). Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method. Materials & Design, 86, 878-886.

[61]Luevano Hipolito, E., Martínez-de la Cruz, A., López-Cuellar, E., Yu, Q.L. & Brouwers, H.J.H. (2014). Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation. Materials Chemistry and Physics, 148(1-2), 208-213.

[62]Luevano Hipolito, E., Martínez-de la Cruz, A., Yu, Q.L. & Brouwers, H.J.H. (2014). Precipitation synthesis of WO3 for NOx removal using PEG as template. Ceramics International, 40(8, part A), 12123-12128.

[63]Pelzers, R.S., Yu*, Q.L. & Mangkuto, R.A. (2014). Radiation modeling of a photo-reactor using a backward ray-tracing method: an insight into indoor photocatalytic oxidation. Environmental Science and Pollution Research, 21(19), 11142-11154.

[64]Luevano Hipolito, E., Martínez-de la Cruz, A., Yu, Q. & Brouwers, H.J.H. (2013). Photocatalytic removal of nitric oxide by Bi2Mo3O12 prepared by co-precipitation method. Applied Catalysis. A, General, 468, 322-326.

[65]Spiesz, P.R., Yu, Q.L. & Brouwers, H.J.H. (2013). Development of cement-based lightweight composites: part 2: durability-related properties. Cement & Concrete Composites, 44, 30-40.

[66]Yu*, Q.L., Spiesz, P.R. & Brouwers, H.J.H. (2013). Development of cement-based lightweight composites: part 1: mix design methodology and hardened properties. Cement & Concrete Composites, 44, 17-29.

[67]Yu*, Q.L., Brouwers, H.J.H. (2012). Development of a self-compacting gypsum based light-weight composite. Cement & Concrete Composites 34: 1033-1043.

[68]Yu*, Q.L., Brouwers, H.J.H. (2012). Thermal properties and microstructure of gypsum board and its dehydration products: a theoretical and experimental investigation. Fire and Materials 36: 575-589.

[69]Yu*, Q.L., Brouwers, H.J.H. (2011). Microstructure and mechanical properties of β-hemihydrate produced gypsum: An insight from its hydration process. Construction and Building Materials 25(7): 3149-3157.

[70]Ballari, M.M., Yu, Q.L., and Brouwers, H.J.H. (2011). Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catalysis Today 161: 175-180.

[71]Yu*, Q.L., Ballari, M.M., and Brouwers, H.J.H. (2010). Indoor air purification using heterogeneous photocatalytic oxidation, Part 2: Kinetic study. Applied Catalysis B: Environmental 99: 58-65.  

[72]Yu*, Q.L., Brouwers, H.J.H. (2009). Indoor air purification using heterogeneous photocatalytic oxidation, Part 1: Experimental study. Applied Catalysis B: Environmental 92: 454-461.