当前位置:首页 > 师资队伍 > 专任教师 > 工程力学系

吴文平

 

姓   名
吴文平
性    别
出生年月
 
学历学位
工学博士
职    称
副教授
博导/硕导
博导
邮   编
430072
办公电话
027-68775496
手    机
 
通信地址
武汉武昌东湖南路8号
Email
wpwu@whu.edu.cn
学习经历
2010.10~2012.10  德国伍珀塔尔大学(Bergische Universität Wuppertal), 博士后
2006.09~2010.07  北京交通大学土木建筑工程学院力学系,工学博士
2008.09~2009.09  德国达姆斯塔特工业大学(TU Darmstadt)力学系,联合培养博士生
2004.09~2006.07  北京交通大学土木建筑工程学院力学系,硕士生,提前攻读博士学位(免于硕士学位论文答辩)
2000.09~2004.07  兰州交通大学土木建筑工程学院,土木工程, 工学学士
任职经历
2010.08~2012.12  武汉大学土木建筑工程学院,师资博士后,讲师
2013.01~         武汉大学土木建筑工程学院,副教授
2015.09~         武汉大学土木建筑工程学院,副教授, 博士生导师
 
含本科生和研究生课程
本科生课程 《工程力学》, 《弹性力学及有限元》,
《科技文献检索与论文写作》
 
研究生课程 《材料力学行为》, 《微纳米力学》
 
 
 
 
 
 
 
 
主要研究领域
1. 高温结构材料的强化与失效
2. 金属及合金损伤失效的多尺度模拟与计算
3. 微纳米材料力学性能的测试、模拟与表征
主要论文著作  
1.  SCI期刊论文  (* Corresponding author)
[1] Wu W PGuo Y F, Wang Y S, Mueller R, Gross D. Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ' phase interfaces in Ni-based superalloys. Philosophical Magazine 2011, 91(3): 457-472.
[2] Wu W PGuo Y F, Wang Y S. Evolution of misfit dislocation network and tensile properties in Ni-based superalloys: a molecular dynamics simulation. Science China-Physics, Mechanics & Astronomy, 2012, 55(3): 419-427.
[3] Wu W PGuo Y F, Wang Y S. Influence of stress state on the evolution of misfit dislocation netrworks in a Ni-based single crystal superalloy. Philosophical Magazine, 2012, 92(12):1456-1468.
[4] Wu W PGuo Y F, Wang Y S, Xu S. Evolution of interphase misfit dislocation networks in Ni-based single crystal superalloy under shear loading. Acta Physica Sincia, 2011, 60(5): 056802.
[5] Wu W PGuo Y F, Dui G S, Wang Y S. A micromechanical model for predicting the directional coarsening behavior in Ni-based superalloys. Computational Materials Science, 2008, 44(2): 259-264.
[6] Wu W PGuo Y F, Wang Y S, Mueller R, Gross D. Influence of external stress and plastic strain on the morphological evolution of precipitates in Ni-based superalloys. Computational Materials Science, 2009, 46(2): 431-437.
[7] Wu W P,Guo Y F, Wang Y S. Finite element analysis of γ' phase raft mechanism in a Ni-based single crystal superalloy. Transactions of Nonferrous Metals Society of China, 2006, 16(S): 1990-1995.
[8] Guo Y F, Wang Y S, Wu W P, Zhao D L. Atomistic simulation of martensitic phase transformation at the crack tip in B2 NiAl. Acta Materialia, 2007, 55: 3891-3897.
[9] Guo Y F, Wang Y S, Zhao D L, Wu W P. Mechanisms of martensitic phase transformations in body-centered cubic structural metals and alloys: Molecular dynamics simulations, Acta Materialia, 2007, 55: 6634-6641.
[10] Wu W P*, Yao Z. Molecular dynamics simulation of crack tip stress and microstructure evolution of a growing crack in single crystal nickel. Theoretical and Applied Fracture Mechanics, 2012, 62: 67-75.
[11] Wu W P*, Yao Z. Sample size dependence of crack-tip microstructure and stress evolutions in single crystal nickel. Computer Modeling in Engineering and Sciences, 2013, 93(4):235-252.
[12] Wu W P*, Yao Z. Influence of strain rate and temperature on the crack tip stress and microstructure evolution of monocrystalline nickel: a molecular dynamics simulation. Strength Mater. 2014, 46(2): 164-171.
[13] Li Y L, Wu W P*, Li N L, Qi Y. Cohesive zone representation of crack and void growth in single crystal nickel via molecular dynamics simulation. Computational Materials Science, 2015, 104: 212-218.
[14] Sun X Y, Wu W P, Dong X L, Xu Y J. Cross-sectional geometry dependence of spontaneous phase transformation of copper nanowires. Current Applied Physics, 2015(15): 363-366.
[15] Wu W P*, Wei Y, Liu P. Indentation depth-dependence of the hardness of NiTi shape memory alloy and Al single crystal: phase transition versus plasticity. Materials Research Innovations, 2015, 19: 37-40.
[16] Wu W P*, Li Y L, Sun X Y. Molecular dynamics simulation-based cohesive zone representation of fatigue crack growth in a single crystal nickel. Computational Materials Science, 2015, 109: 66-75.
[17] Qi Y, Wu W P*, Chen Y B, Chen M X. Crystal orientation dependence of crack growth and stress evolution in single crystal nickel: a molecular dynamics simulation-based cohesive zone model. RSC Advances, 2015, 5: 65942-65948.
[18] Li S Y, Wu W P*, Chen M X. An anisotropic micromechanics model for predicting the rafting direction in Ni-based single crystal superalloys. Acta Mechanica Sinica, 2016, 32 (1):135-143.
[19] Wu W P*, Li N L, Li Y L. Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature. Computational Materials Science, 2016, 113: 203-210.
[20] Li Y L, Wu W P*, Ruan Z G. Evolution of interfacial dislocation network and stress distribution of Ni-based single crystal superalloys under temperature. Acta Metallurgica Sinica, 2016, 29(7):689-696.
[21] Xia R, Zhou H, Wu R, Wu W P* Nanoindentation investigation of temperature effects on the mechanical properties of Nafion®117. Polymers, 2016, 8(9):8090344.
[22] Nie K, Wu W P*, Zhang X L, Yang S M. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. Journal of Materials Science, 2017, 52(4): 2180-2191.
[23] Li S Y, Wu W P*, Li Y L, Chen M X. An anisotropic micromechanical model for calculation of effective elastic moduli of Ni-based single crystal superalloys. Science China-Technological Sciences, 2017, 60(3):452-458.
[24] Wang B, Kang G Z, Kan Q H, Wu W P, Zhou K, Yu C. Atomistic study on the super-elasticity of single crystal bulk NiTi shape memory alloy under adiabatic condition. Computational Materials Science, 2018, 142: 38-46.
[25] Zhou H, Wu W P, Wu R, Hu G, Xia R. Effects of Various Conditions in Cold-welding of Copper Nanowires: A Molecular Dynamics Study. Journal of Applied Physics, Accepted.
2.  其他
[1] 吴文平, 郭雅芳. 镍基单晶高温合金定向粗化机制有限元分析, 北京交通大学学报(自然科学版), 2008, 32(4): 67-70. 
[2] 吴文平, 郭雅芳, 汪越胜. 镍基单晶高温合金定向粗化行为及高温蠕变力学性能研究. 力学进展. 2011, 41(2): 172-185.
[3] Tang Z J, Zhou D B, Peng C W, Wu W P*. The structural analysis of steel silos with cylindrical-wall bearing and profile-steel bearing. Civil engineering Journal. 2015, 12(2): 1-9. DOI: 10.14311/CEJ.2015.02.0012.
[4] 刘盼, 吴文平*. 小压深情形下玻氏压头面积函数的修正及硬度的测量. 纳米科技, 2015, 12(4): 79-82. (教学论文)
[5] 黄凯, 吴文平. 基于红外热像技术的应力分析实验, 实验室研究与探索, 2016,35(8): 17-20. (教学论文)
3.  Selected Conference Papers
[1] Wu W P, Guo Y F, Dui G S, Wang Y S. Study on micromechanical behavior in Ni-based single crystal superalloys. Proceedings of the 5th International Conference on Nonlinear Mechanics at Shanghai, China, 2007, P.296-301.
[2] Wu W P, Guo Y F, Wang Y S. Micromechanics method to simulate morphological evolution of precipitates in Ni-based superalloys. Proceedings of the Second International Conference on Heterogeneous Material Mechanics at Huangshan, China, 2008, P.26-29.
[3] Wu W P,Guo Y F, Wang Y S. Micromechanics method to evaluate fatigue life of Ni-based superalloys during morphological evolution. Advances in Fracture and Damage Mechanics VII. Key Engineering Materials, 2008, 385-387: 221-224.
[4] Wu W P, Guo Y F, Wang Y S, Mueller, R., Gross, D. Atomistic  imulation of misfit dislocation network structures evolution in γ/γ' phase interface of Ni-based superalloys under tensile loading. Proceedings of the 18th International Conference on Computer Methods in Mechanics at Zielona Góra, Poland, 2009, P.509-510.
[5] Wu W P, Guo Y F, Wang Y S. Influence of strain rate and temperature on interface misfit dislocation networks in Ni-based superalloys. Proceedings of the Third International Conference on Heterogeneous Material Mechanics at Shanghai, China, 2011, P. 92-95.
[6] Wu W P, Yao Z. Temperature dependence of deformation twinning and stress evolution around the crack-tip of intergranular fracture process in nickel. Proceedings of International Conference on Science and Technology of Heterogeneous Materials and Structures at Wuhan, China, 2013, P.55-56.
[7] Wu W P, Wei Y. Depth-dependency of the hardness of NiTi shape memory alloys at different load modes by nanoindentation experiments. Proceedings of International Conference on Materials Science and Engineering, Sanya, China, 2014, P.1-7.
[8] Wu W P, Qi Y. Molecular dynamics -based cohesive zone representation of crack growth and stress evolution in single crystal nickel: Effects of crystal orientation. 2015-International Symposium on Multi-scale Modeling and Simulation of Materials, Beijing, China, 2015.
 
承担的主要科研项目
1. 主持项目
(1) 国家自然科学基金青年基金: 基于界面位错网演化的镍基合金蠕变损伤与本构模型研究  (Grant No. 11102139) (2012.1~2014.12)
(2) 国家自然科学基金面上:镍基单晶高温合金界面位错及位错网演化对蠕变性能的影响 (Grant No. 11472195(2015.1~2018.12)
(3) 国家自然科学基金面上:镍基单晶高温合金低周疲劳损伤的相界面微结构演化与本构模型研究 (Grant No. 11772236)(2018.1~2021.12)
(4) 国家自然科学基金与欧盟委员会国际合作(NSFC-ERC)“中欧人才项目”:
“金属玻璃剪切带的形成和演化对力学性能的影响” (Grant No. 1171101184)(2018.1~2019.12)
(5) 湖北省自然科学基金面上:镍基单晶高温合金定向粗化行为对合金蠕变性能的影响 (Grant No. 2014CFB713(2014.1~2015.12)
(6) 湖北省青年科技晨光计划:“镍基单晶高温合金的界面疲劳裂纹扩展及微结构演化”(2016.1~2017.12)
(7) 中国博士后科学基金面上项目: 金属晶体疲劳裂纹扩展及其疲劳损伤演化的界面效应 (Grant No. 20110491205) (2011.6~2012.12)
(8) 第五批博士后科学基金特别资助: “镍基单晶高温合金界面微结构及其对蠕变力学性能的影响 (Grant No. 2012T50665(2012.9~2013.12)
(9) 中央高校基本科研业务经费(学科交叉类): 原子内聚力模型模拟纳米金属晶体疲劳裂纹扩展及疲劳损伤演化的晶界效应 (2015.1~2016.12)
(10) 中央高校基本科研业务经费(国防B类): 基于界面微结构演化机制的镍基单晶合金疲劳失效行为研究 (2017.1~2017.12)
(11) 武汉大学引进人才专项经费:镍基单晶高温合金蠕变损伤的多尺度模型与分析 (2013.1~2016.12)
 
2. 参加项目
科技部重大专项项目1项
国家自然科学基金重点项目1项
国家自然科学基金面上项目2项
企业横向项目1项
2006年 1月获北京市第12届力学年会青年优秀论文奖
2008年12月被评为北京市三好学生
2011年7月获北京交通大学优秀博士学位论文
2012年12月入选武汉大学“351人才计划”珞珈青年学者
2013年9 月获评第十届武汉大学杰出青年
主要社会和学术兼职
 
《武汉大学学报》工学版编委
《Computational Materials Science》, 《Materials Science and Engineering A》, 《International Journal of Fatigue》,《Modelling and Simulation in Materials Science and Engineering》,  《Engineering Fracture Mechanics》,《Scientific Reports》, 《Molecular Simulation》, 《Applied Mathematics and Mechanics (English Edition) 》, 《中国科学》, 《力学学报》等国内外期刊审稿人
 
至2017年10月